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ABSTRACT 

A process (T, P)  is said to have the "d > 6" property if there is a 

uniform, positive lowerbound 8 on the d separation between the 

T-P  names of (almost) every pair of points x ~ y. A finite group ro- 

tat ion with parti t ion into distinct points provides a trivial example. Given 

any process having the d > 8 property we show that  there exists a Bernoulli 

shift B so that  T x B is measurably isomorphic to the natural  extension of 

a piecewise monotone, continuous, and expanding map of the unit  interval. 

This construction is applied to produce interval maps which are 

ergodic but  not weak-mixing, weak-mixing but  not mixing, and mixing 

but  not exact with respect to their unique absolutely continuous invariant 

measures, in contrast  with the results known for piecewise C l+t  expansive 

interval maps. In obtaining these examples we identify a number  of non- 

trivial classes of automorphisms T which admit processes having the d > 

property. 

1 

Let I = [0, 1] equipped with Lebesgue measure A on the Lebesgue subsets B. We 

shall be concerned with measurable point mappings g : I ~ I which satisfy: 
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(1.1) There exists a finite or countably infinite collection of closed intervals 

I,, C_ I, I ,  = [an, b,], such that A(I, N I, ,)  = 0 iff m # n and U ,  I,, = I, and 

such that 

(1.2) Restricted to each I , ,  gll. is continuous and monotone (non-increasing 

or non-decreasing). 

We shall call such mappings p iecewise  m o n o t o n e  and  c o n t i n u o u s  (p.m.c.). 

To study the dynamics of such a map one looks for an invariant measure # for g; 

to avoid trivialities one specifies/~ << A. This is an old idea going back at least 

to aenyi  [a], Khinchine [Kh] and Doeblin [D], and the numerous articles cited 

there concerning number theoretic transformations. 

The problem becomes tractable when we impose additional conditions on 9. 

Here is a much studied situation. Let g be p.m.c and satisfy 

(1.3) There exists a A _> 1 such that, for all n 

essinf{lg'(x)l} >_ A. 
z E I .  

(1.4) g[1,, is twice continuously differentiable. 

In case there are finitely many in tervals / ,  Lasota and Yorke [L Y] proved the 

existence of absolutely continuous invariant measures for 9 satisfying 1.1) - 1.4). 

Under the same conditions Bowen [Bow] went on to show that if g is weak-mixing 

with respect to such an invariant l*, then the natural extension of g (with respect 

to/~) is automatically a Bernoulli shift. 

Earlier, Adler [Ad] had found unique invariant measures for p.m.c, g satisfying 

1.3) and 1.4) with infinitely many intervals I ,  but with the additional conditions 

su I g"(x) ] (1.5) 3M, Vn p , ~ .  _ • ,~,,e/.]g (Y)g (-) < M. 

(Trivial for finitely many intervals) 

(1.6) g (x . )  = I. 

1.5) is known as Renyi's condition. Bowen and Series [Bow S] observed that 1.6) 

may be weakened to the Markov Condition 

(1.7) If ~ = 0 {  lim. g(x), l img(x)} then ~C_O{a , ,b ,  } 
n x~a~ x~b~ n 
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and, for all 1, k 

i ,  _c 
n>O 

Under conditions 1.1) - 1.5) and with 1.7) their result ensures a unique invari- 

ant measure/~ << ~ and it turns out that the natural extension of g with respect 

to/~ will be a Bernoulli shift. 

A number of authors have weakened Renyi's condition 1.5) obtaining analogues 

of the Bowen and Series theorem for not necessarily C 2 maps. See, for example, 

[W], [Ke], and [Bo2]. A common theme amongst these results is that conditions 

sufficient to ensure the existence of a unique absolutely continuous invariant 

measure imply, with respect to this measure, the natural extension of g is a 

Bernoulli shift. 

The purpose of this article is to show that, at least in the class of p.m.c. 

maps with unique absolutely continuous invariant measures, this type of behavior 

(i.e., weak-mixing =*. Bernoulli) is not inevitable. In particular, we construct 

p.m.c, maps g with Lebesgue measure the unique absolutely continuous invariant 

measure and which are, in order, ergodic but not weak-mixing, weak-mixing but 

not mixing and mixing but not exact (natural extension not a K-automorphism). 

The central idea is contained in Section 3 where we describe a general method 

for extracting a p.m.c, interval map as a factor of the direct product of an abstract 

dynamical system (S, u) and a Bernoulli shift. We require the system (S, u) to 

possess the "d > ~ property": a lowerbounded d separation between (almost 

every ) pair of names with respect to some generating partition. This property 

seems new to the literature and appears to be of interest beyond its use in our 

constructions. The bridge between the above dynamical system and the class of 

p.m.c, interval maps is provided by the generalized baker's transformation. 

In Section 4 we construct our first two examples. Section 5 is reserved for the 

mixing, but not exact case, where it turns out any mixing rank 1 automorphism 

will suffice for the transformation S. In Section 2 we will establish notation, 

conventions, and sketch a few facts about rank 1 transformations we shall be 

using. 

The results in this article have been greatly clarified through the helpful com- 

ments of D. Rudolph and A. del Junco. The referee has generously offered an 

alternate, more elegant proof of Proposition 5.3 which we present - -  both proofs 

are based on the work of Kalikow [Ka]. The article of King [Ki] is a good source 
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for background material on rank 1 transformations. We are pleased to acknowl- 

edge these contributions. 

2 

In this section we establish our notation and a few prelinfinary lemmas, wherever 

possible adhering to what is standard. The knowledgeable reader, particularly 

one familiar with the rank-1 block constructions, may prefer to begin directly 

with Section 3. 

By a d y n a m i c a l  s y s t e m  (X, B/t, T) we shall mean a Lebesgue probability 

space (X, B,/t) equipped with a point mapping T : X ---* X which is measurable 

and measure-preserving: T - 1 A  e B and/ t (T-1A)  =/ t (A)  for all A E 13. 

A p a r t i t i o n  P = {Pi}ien will be a finite or countable collection of disjoint 

subsets P i e  B satisfying/t([.J Pi) = 1. Partition elements Pi satisfying #(Pi)  > 0 

will be called a t o m s  of P. Given P = {Pi} ien,  and Q = {Qj} jen '  of the same 

space we define the jo in  P V Q = { P i n  Q.i } ien or c o m m o n  r e f i nemen t  of 
j e l l  I 

P and Q. We say that P refines Q (aald write Q < P)  if each atom of Q 

is (up to null sets) a union of atoms of P. We say that P e-refines Q (and 

write Q < '  P)  if there exists a (~ < P having the same number of atoms as Q 

and Y]~i/t(QiAQ, i) < e. In the presence of T, P gives rise to countably many 

partitions T~'P = {TkPi}~en (k E Z i f T  invertible, k E Z -  if T is not.) We say 

that P g e n e r a t e s  B under T if the smallest a-algebra containing all the T k P  

is B. It is an important observation for us that, since X is a Lebesgue space, 

this statement is equivalent to requiring that the collection { T k P }  separates 

(/t-almost all) points of X. 

By a process  we shall mean a pair consisting of a dynamical system 

(X, B,/t, T) with T invertible and a partition P of X. We write (X,/3, #, T, P)  

or when there is little danger of confusion about the underlying measure space, 

simply (T, P).  

Given a process (T, P)  and a point x E X we may consider the T - P name 

of x, a member of II z, denoted x _ ~  mad defined by 

(x_~o~)j = io v} TJx  E Pio (¢} x E T-JPio) .  

Evidently, # a.e. x E X has a well defined T - P name. If x_°°~ EI I  z and m _< n 
n we denote by x,n = XmX,n+l • • • xn. xk means x~. 
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If (T, P)  is a process, m < 0 < n integers and in, i,,,+1 .. .  in EI I  n-m+l a finite 

string of symbols we form the e l e m e n t a r y  cy l inder  

n • • , ,  {x EX]  x,,, = , , , , , ,~+1. . . i , ,}  =T-mpi , , ,  t3T-m-lP, , ,+,  . N T - " P , , , ,  

measurable w.r.t. V~ T - i P .  If T is ergodic, we may apply the Birkhoff Ergodic 

Theorem obtaining a subset X '  C_ X, #(X')  = 1 so that if x' E X'  and C is an 

elementary cylinder, C = {x I x~ = imim+, . . ,  i,, }, 

1 
p ( C ) =  N l i m c o N _ ( n _ m +  1) 

(i • [0, N - ( n - m  + 1))lxl +( ' -m) = i ,n im+, . . . in} .  

We call such x I gener ic  for (T, P). 

Let A be a finite or countable set of distinct symbols and let X = A z. Define 

S : X ~ X by (Sx)i  = xi+l, the "shift to the left". Any S-invariant probability 

measure # on the product (of discrete) a-algebra gives rise to a shif t  d y n a m i c a l  

s y s t e m .  Let Pa = {x • AZlx0 = a}. Then P = {Pa}aea is called the t i m e - z e r o  

p a r t i t i o n  and P is obviously a generator under S. 

Shift systems are fundamental in the following sense. Let (X, B, #, T) be any 

dynamical system with T invertible and suppose P = {Pi}i~rI generates under 

T. The T - P name of x • X defines a 1-1 mapping from (it a.e.) x • X to 

z ~ • II z which carries T to the shift S, and It to a shift invariant measure on 
- - O O  

II z. The original dynaanical system is therefore measurably isonmrphic to this 

shift system. The partition P is sent to tim time-zero partition of II z. 

Let a • A N and 13 • A M be two finite strings, say ~ = aoal . . . aN-1  and 

/3 = bobl.. ,  bM-1. We define the conca t ena t i o n  of ~ and /~, an element of 
A N+M by 

a ®/3 = aoal . . .aN-lbobl  . . . b M - l .  

If N = M then we measure the d-dis tance between ~ and/~ by 

1 
d(~,~) = ~ # { i  • [0, N) la~ # b~}. 

We denote by lal, Ifll (or sometimes a = It~l, b = I/~l) the lengths of o~ and ft. 

As usual, a Roh l in  s tack of  height  b is a partition R = {A1 ,A2 , . . .  ,Ab ,E}  

with TAi  = Ai+l, 1 _< i _< b -  1. The set E is called the e r ro r  set.  A 

fundamental and useful observation in ergodic theory is that every aperiodic T 
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on a Lebesgue space X admits arbitrarily long Rohlin stacks with arbitrarily 

small E.  Restricting this notion further gives a geometric (and possibly the most 

intuitive) definition of a rank 1 automorphism. 

Definition 2.1: We say T : X -+ X is r a n k  1 if there is a sequence of Rohlin 

stacks R1, R2 , . . .  so that for each e > 0 and finite partition Q of X, there exists 

an n so p(En) < e and Q < Rn. | 

Remarks 2.2: 

(i) The condition p ( E , )  < e ensures that that Q is also well approximated 

(within 2e) by unions of the levels of the n stack {A~n) ,A~n) , . . . ,A~ )} = Rn - 

{En}. 

1 Choose a (ii) Suppose one finds a T-invariant set A with 0 < #(A) _< 3" 

la(n)  a(n) a(n) ~ / whose levels approximate A very well; in s t a c k  R n  = t -* l  , '~2 " " " ~ b n  ,~- 'n j  

4./A(") particular, there exists a level AI '0 e R,~ so p(A N AI '')) > g#[ i )" But then 

this same inequality must be true for all A~ '0, 1 _< j < b,, and we conclude that 

A has, instead, large measure. Thus any rank 1 T is automatically ergodic. 

(iii) By (ii) we see that if T is rank 1 it is either periodic or aperiodic (i.e.; set 

of periodic points is of measure zero). 

(iv) It will be convenient for us to always work with a subsequence of the 

Rn which we now describe. Let Q1 < Q2 < . . .  be a generating sequence of 
ek 

finite partitions and let en ~ 0. For each k choose Rn~ > Qk with p(Enk) < e~. 

Then, for all Q and e > 0, for all large enough k, Q < R,,, and p(Enk) < e. 

For aperiodic T, this assumption, combined with Rohlin's Lemma allows us to 

assume limk b.,  = oo. 

(v) Let P = {P,}~eA be a generator for T and let S : A z --* A z be the related 

(isomorphic) shift automorphism. Let e > 0 be given. Then there is a single string 

fl = al a~ . . .  ab~ of symbols from A so that for almost every x E A z and for all 

large L we may make an "idealized" copy of x L denoted ~0 L, a concatenation of 

copies of fl interspersed with spacer symbols from A, the spacers occupying at 

most a fraction e of the indices, so that 

L) < ,  

Thus, T - P names are, within small d error, copies of fl and a small proportion 

of spacer symbols. | 

It turns out that with a careful choice of P and the stack sequence a more rigid 

structure for T - P names is ensured. This well-known construction is described 
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in King [Ki]; we will simply sketch here what is possible. We will make essential 

use of these properties in what follows. 

First, one may simultaneously construct a new sequence of ref ining stacks 

k ,  < < . . .  < < . . .  --* 0) 

which generate the a-algebra, and a two set generating partition P = {P0, P]} 

so that each stack level is contained ill an atom of P (i.e.  P < /~,,). The 

implications of this for T - P names follows. 

(2.3) There exists a sequence of strings of zeros and ones (n-blocks) so that for 

all n, an (n + 1)-block is a concatenation of n-blocks interspersed with spacers 

(for convenience always the symbol "1") and, e > 0 given, for ahnost every 

z E {0, 1} z, for all large L, x0 L is a concatenation of n-blocks interspersed with 

spacers occupying at most a proportion e of tile indices ill X0 L. 

In case T is aperiodic we may also ensure that the base ~,]") of the stack 

Rn-= { ~ , ) , ~ n ) , . .  ~(n) ~ 1. ~ / b " - l T - i P ;  the • , " b .  , ~ n  j is measurable with respect to v0 

implication for n-blocks being: 

(2.4) The position of n-blocks inside the (n + 1)-blocks is uniquely determined. 

(2.5) For almost every x e {0, 1} z, since p(/~,,) ~ 0 we also see that for all large 

enough n, the time-zero coordinate of x, x0 is interior to the appearance of an 

n-block in x_°°oo. We shall denote this "time-zero" n-block by B, , ( x ) .  

One way to obtain 2.4) is to ensure that the T - P name of x E .4~") begins 

with a unique string: 

(2.6) We may assume an n-block begins with "1" followed by a string of n 

"0" s  followed by a "1", and that all n-block ends with a "1". All spacers are 

assigned the label "1". 

In practice, a rank 1 example is often constructed by giving a recursive def- 

inition of the n-blocks using a fixed symbol for spacers and obtaining the shift 

invariant measure p on cylinders A as the limiting frequency of the appearance 

of A in an n-block. This point of view is nicely described by Kalikow in [Ka]. 

One thereby obtains 2.3) and 2.5) but not necessarily the conditions 2.4) and 

2.6) for the time-zero partition. 

We conclude this section with the observation that, in shift setting for aperiodic 

rank 1 T, without loss of generality, most appearances of an n-block in x_oo°° will 
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be followed by a spacer string whose length is a "small" fraction of the length of 

an n-block. To this end we define, if x0 is in a time-zero n-block, 

In(x) = # of spacer symbols between B , ( x )  and the next n-block 

to the right of B , ( z )  in x °o - - o o "  

Set l , ( z )  = 0 if x0 is not in an n-block. Let 50 > 0 be fixed and set 

Hn = {x e A~")I In(x) > 601B,(x)l}. 

Since, for x E .4~") 

~ ( ~ , )  > 5o lB , (x ) lp (H, )  = 501B,(X)[/ ,( .~,))  # ( H , )  
- ~(A~,,))  

we obtain 

~ o l B , , ~ ? )  ) > > O. t,(~ '°) 
Since IB . (~ ) I~(A~ ")) = 1 - l ' ( E . )  ~ 1, the left-hand side converges to z e r o .  For 

large enough n, only a small fraction of x in .~n), and hence in/~,, ,  will have 

their time-zero n-block followed by a spacer string longer than 50[B,(x)[. We 

may now apply the Borel-Cantelli Lemma to obtain 

LEMMA 2.7: Let 5o > 0 be given. Then we may choose a subsequence of  the 

n-blocks B,, k so that, for almost every x E {0,1} z, for all su~ciently large k, the 

time-zero n-block for x, Bnk( x ) is followed by a spacer string of length less than 

,5olBn.(z)l. 

3 

We describe a general construction which embeds an abstract dynamical system 

as a factor of the natural extension of a piecewise monotone and continuous 

interval map. The main idea here appears to be new and it is hoped that it will 

find application beyond its use in this article. 

The following condition will be imposed on our abstract dynamical system. 

Definition 3.1: Let ~ > 0. We say that the process ( X , B , p , T , P )  satisfies the 

d > 6 p r o p e r t y  if there is an Xo C X ,  p(Xo) = 1, so that if x ,y  e )Co, x ~ y 

then either 

l i m s u p -  . . d(xo,Yo) > 6 
N - ' * O O  
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or  

limsup d(z°, , ,  y°,,) > 
n - , ~  O O  

where x_°°oo and y_°°oo are the T - P names of x and y respectively. II 

Evidently, the above is a condition on a process. It is not hard to show that 

this is in fact a property of the automorphism only, but since we shall not be 

needing this we will say that the dynamical system (X, B, #, T) satisfies the d > 

property if there exists a generating partition P so that the process (X, B, p, T, P )  

satisfies d > 6. The main tool we shall use in the constructions to follow is 

THEOREM 3.2: Let (Y, 3:', u, S)  be a dynamical system satisfying the d > 6 prop- 

erty with respect to a generating partition conta/ning I atoms. Then there exists 

a p.m.c. (with respect to I subintervals) map g : [0, 1] ~ [0, 1] which satisties 

1.1), 1.2), 1.3) and 1.6), which is Lebesgue--measure--preserving and whose natu- 

ral extension is measurably isomorphic to a direct product of the transformation 

S and a Bernoulli shift. 

Let R = {R0,R1, . . .  ,Rt-1} be the generating partition for S. Let (Q ,~ ,p , a )  

be a Bernoulli shift with independent generator Q = {Q0, Q 1 , . . . ,  Qt- i  } satisfy- 

ing 
6 

p(Qo) = 1 - -~, p(Q,)  = p(Q2) = p(QI- , )  - 3(l - 1----~" 

Form the product dynamical system 

( X , B , # , T )  = (Y  x fl ,3: x O,v x p , S  x ~r) 

and define a measurable partition of X as follows: P = {P0, P1, . . . ,  Pt-1} with 

= U Rs x Qt, j = 0 , 1 , . . . , l -  1. Pj 
s+t=j(mod 1) 

There is a simple formula to construct the T - P name of z = (y,~v) given the 

S - R name of y and the o -Q  name of ~v: 

xi = yi + wi(mod l); i E Z .  

We will need the following: 
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LEMMA 3.3: The partition P is a generator for T. 

Proof: Let Y0 C_ Y be the set of full measure given by the d > 6 property and 

let ~0 C fl be the set of full measure whose points are separated by V_~oo a- iQ  

and are generic for Q. we will show that the T - P names of x = (y,w) and 

z' = (y',w') with z # x' in Y0 x f~0 are distinct. 

Suppose not. Observe first that y # y~ since {a- iQ}i¢z  separates the points 

of f~0 and for each s there is exactly one t so that s + t = j .  

Next, obtain a sequence of integers nk ~ oo (or - n ~  ~ -oo ,  the argument will 

be the same) so that - nk ,nk d(yo ,Y0 ) > 6 f ° r a l l k .  Conclude that - -k ~nk d(to0 , to 0 ) > 

since under our supposition, toi and cdi will differ on every index i such that 

Yi # Y'i" 

But that gives a contradiction, since for sufficiently large k, the number of 

indices i E [0, nk) for which toi and 0Ji will both be zero exceeds [1-  [ ~  + ~]]nk = 

(1 - df)nk (the extra ~ to take care of the difference between frequency of zero 

and #(Q0)) whenever to and to' are generic for Q. I 

Now, for j = O, 1 , . . . ,  l - 1 and x E X define 

oo N ~J(X) =El XP'I VT-ip](x)=linlE[ VT-ip](x) "-2e'li~ I~N}(x)" 
i=1  i=1  

[, LEMMA 3.4: For all j and a.e. x E X ,  cpj(x ) E 3-0:0-1), 

Proof." It is enough to show this bound for qo~N)(x). Let A be an atom of 

vN=I T - i P .  Observe that for each atom at  E vN1  S-JR  there is exactly one 

atom/~k e vN=1 a - i Q  such that /z((ak x /3~) N A) > 0. Moreover, using this we 

may write A as a disjoint union 

i N 

A =  × a t ) .  
k = l  

Expanding, 

/=I A 

A ~ k 
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we see that it is enough to obtain the advertised bound 

/~(Pil~k x ~k). But 

~(Pilak x ~k)= ~-,"[ P.in(Ri x ~)lak x flk] 
! 

for each term 

! 

where s(i) is that s e 10, 1 , . . .  ,1 - 1) satisfying s + i = j (mod  1). 

Finally using the independence we may rewrite the above sum as 

1 

In applying these Lemmas to a proof of Theorem 3.1, we a~ssume the reader 

is familiar with the generalized baker's transformation (g.b.t.) representation of 

an abstract measure-preserving automorphism as a Lebesgue-measure-preserving 

automorphism of the unit square S = [0, 1] × [0, 1]. Those wishing for a more 

complete discussion are referred to [Bol] where this construction is described and 

all of the properties we shall need are discussed in detail. 

We summarize the results of applying this representation to our automorphism 

T with respect to the partition P: 

(3.5) Let Vj :  [0, 1] ~ [0, 1], j = 0, 1 , . . . , I  - 1 be a collection of measurable 

functions satisfying 

Z ~j = 1 .  

Let _f = (~a0, cpl, • • •, ~1-1) and define P.F = {P(°), pO),..., p(I-D}, the "natural" 

partit ion of S induced by [ ,  where 

i_<i 

The ~i, in the terminology of [Boll are the "cutting functions". The action of 

is best described in terms of T/-1 , which maps an atom P(J) onto the verti- TL 
cal column Cj = [E~<¢ f0 ~ w(z)dz, E~<¢flo W(x)dx] x [0,11 in a Lebesgue- 

measure-preserving way and so as to send vertical fibers inside P(I_ j) onto full 

vertical fibers in Cj. It is easy to write ml explicit formula for such a T/_ but 

we shall not need this. The functions ~j may be chosen in such a way that the 

process (TI, PI)  is isomorphic to the process (T, P).  
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(3.6) The a-algebra ( P f ) - ~  -1 i _ = V-oo T~_PI_ is measurable with respect to Y, 

the a-algebra of vertical fibres on S. Let Irl : ,.q ~ [0, 1] be first coordinate 

projection. The cutting functions can be shown to be measurable with respect 
-1  to lrl(P/_)_oo and hence 

(3.7) In view of Lemma 3.4 we see that the ~j  satisfy 

I-------13(t - -<  ' p~  -<  1 - 5" 

In particular, P/_ is a generator for T/_ and the isomorphism of processes in 3.5) 

is in fact measurable isomorphism of the two dynamical systems (X, T, p) and 

(S, TI_,A). 

(3.8) We may specify that, restricted to each column Ci, TI_ preserves order in 

each coordinate. Let Ij be the base of the column Cj, i.e. Ij x [0,1] = Cj. Let 

gJ : Ij ---* [0,1] be gi = rl(Tl_(lr-lx)) and define g :  [0,1] ~ [0,1] by g[b = g)" 

g is the Lebesgue-measure--preserving factor of T/_ on vertical fibers of S and is 

our advertised interval map. We collect the following facts about g. 

(3.9) 

satisfy 

The intervals Ij satisfy 1.1), j = 0, 1 , . . . , l  - 1. The lengths of the Ij 

6 6 
3 ( / -  1----~ -< I I j l  <- 1 - -~. 

(3.10) In view of 3.5) and 3.8) above g satisfies 1.2), indeed each gj is contin- 

uous and monotone increasing on Ij. 

(3.11) For each j,  g(Ii) = [0, 1], in particular g is a Markov Map (property 

1.7)) of the unit interval. 

(3.12) For each j ,  

1 1 
~j(g(z)) - 1 - :  

for almost every z E Ij. 

Thus g is expanding (property 1.3)). 
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(3.13) Since g is Lebesgue-measure~preserving we have 

~ s g -  (x) g'~-y) = 1, 

and if g is ergodic, Lebesgue measure is the unique (amongst all measures abso- 

lutely continuous with respect to Lebesgue measure) invarimlt measure for g. 

(3.14) Since PL is a generator for TL, (TL, A2 ) is the natural extension of the 

system g,X). (In general, the factor of T L on V_~oo T~PI_ gives the natural exten- 

sion for g.) 

4 

We obtain our examples by specifying the process (S, Q) in the construction from 

Section 3. In this section we will discuss two preliminary cases before proceeding, 

in Section 5, with the deeper mixing examples. 

Example 4.1: An interval map satisfying 1.1) - 1.3), and 1.6) which is ergodic 

but not weak-mixing with respect to its unique absolutely continuous inwriant 

measure. II 

Let Y = {0, 1}, B = discrete a-algebra on Y and g = equidistributed probabil- 

ity measure on the two points. Let S be the two point flip: S(0) = 1, S(1) = 0. 

Let R = {{0}, {1}}. Evidently (S,R) satisfies the d >  8 property for every 6 < 1. 

Fix 8 = 3_ 
4" 

The product automorphism T is ergodic but not weak-mixing, possessing a 

rotation factor. Conclude that the interval map 9 from Section 3 is ergodic, 

being a factor of T, but cannot be weak-mixing, since its natural extension, T, 

is not. 

Example 4.2: An interval map satisfying 1.1) - 1.3), and 1.6) which is weak- 

mixing but not mixing with respect to its unique absolutely continuous invariant 

measure. II 

The automorphism S is chosen to be Chac6n's automorphism, first defined 

and studied in [C1] using a cutting-and-stacking description. It will be more 

convenient for us to use the rank 1 shift description of 5". The symbol set is 

{0,1}. Recall from Section 2 that it suffices to specify the m-blocks: 

B0 = 0, B,,+l = B,, ® B,, ® 1 @ B,,. 
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It is a routine check that the rank I conditions 2.3), 2.4) and 2.5) are satisfied. Let 

R be the time zero partition of Y _ {0,1} z and recall the convention bn = ]B,,]. 

We say that  Bn appea r s  at  i0 in the S - R name of z E Y if z~ +b"-x = Bn. 

Given two n-blocks B,,(z) and B,,(y) appearing at io(z) in z _ ~  and io(V) in 

y _ ~  respectively we say these two blocks line up if io(x) = io(y) and we say 

they over lap  if 

i0(y) - b. + 1 _< io(x) <_ io(y) + b. - 1. 

Finally, we say that these two n-blocks over lap subs t an t i a l l y  (for the purposes 

of this example only) if they overlap by more than b,,/3 indices, that  is, 

io(y) - bn + 1 + ~ < io(x) < io(y) + bn - 1 - b_2.n 
3" 

We begin by showing that two n-blocks which do not line up, but overlap substan- 

tially must generate art a pr ior i  lowerbounded amount of d disagreement over 

this overlap. We will be arguing in a "coordinate free" manner where possible, 

using two copies of Bn, B ,  and B_._a, , with B ,  lying above B__¢. We enumerate the 
r~(1) ~(2) and B(,,~I. three copies of B , - I  inside B , ,  starting from the left as ~ , - 1 ,  ~ , - x  

When we wish to describe which copy of B,, these subblocks occupy we shall 

write B (i) B (i) , -1  or ,,-1 as appropriate. Finally, given the two copies ~ and B..._~_, we 

will agree that d(B,, S iB , )  refers to the distance measured over the overlap of 

B'--~ and B,,~ shifted j indices to the right relative to B---~. 

LEMMA4.3: Let B = B ,  (n > l) and let l < j < 2-b Then _ _  _ _  _ _  3 n -  

d(B, SiB)  > ~,. 

This will certainly be true if we can prove the stronger 

LEMMA 4.4: Let B = B .  (n >__ 1). Then 

_(a) d(B, SJB)> ~ i l l  _<j _< ]]BI. 
(b) / f  d(B, SJB) <_ ~ then d(B, Si±'B) > ½ where we allow 

j = 0 , 1 , . . . , b , _ l .  

(c) = or j = + 1 for some k < n then d(B,  S f B )  > ¼. 

Proof." These three statements are easily verified for the case n = 1 by direct 

calculation. We assume n > 2 and the result true for 1 < k < n. Note that 

b,, _ 13 and bn-1 >__ 4. 
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CASE 1: j=l .  There are 3 substantiM overlaps of ( n - l )  blocks each yielding J > 

1_ by application of b). Of the 3 remaining indices, 2 record a disagreement (the 
2 

two spacer " l" 's)  yielding error rate ~ over this collection of indices. Combining 

we have J > 1. 

CASE 2 : 1  < j < lb , -1 .  There are 3 substantial (n - 1)-block overlaps each 

1 by a). There are two (possibly) insubstantial (n - 1)-block of which gives d > 

overlaps and the two indices corresponding to spacer " l" ' s  remaining. If each 

(n - 1)-block (possibly) insubstantial overlap yields d > I then we proceed as 

follows: 

If one of the spacer " l" ' s  aligns with a zero we easily calculate d > I on the 

entire overlap. If d = 0 measured over the two spacer indices we proceed as 

follows. Suppose k is the length of (all 3) substantial (n - 1)-block overlaps, 

l and (l - 1) respectively, the length of the (possibly) insubstantial ones. The 

number of indices of disagreement on, say, an interval of length I is strictly greater 

than II  and so is (an integer) _> l ( l  + 1). Counting errors this way we obtain 

>_ I(3k + 3 + 21 + 1) over the entire overlap of length 3k + 3 + 21 + 1. Conclude, 
1 again d > ~ on the n-block overlap. Let us agree to call the above argument 

absorb ing  d = 0 over the  spacers  and observe that we need one more good 

overlap interval than spacer index to make it work. 

Next, if one of the (possibly) insubstantial overlaps yields d _< 1, since the 

1 This yields at least ½1 other overlap appears shifted by one, it sees d > ~. 

disagreements over the two overlaps of total length 21 - 1 (lengths l and (l - 1), 

respectively) giving d _> ~ > ¼. Again, we have enough intervals to absorb 

d = 0 for the two spacer "l" 's .  

CASE 3 : 2  (1) (1) ~bn-1 <_ j < bn-1. The B,,_ l /B, ,_ 1 overlap is not sul:)stantial. Choose 

0 _< k < n - 1 to be smallest so that the last Bk block in ~,,-1n(1) covers the above 
(~) 

mentioned overlap. There are now two possibilities. If the last Bk in B~_ 1 and 

the first Bk in B(I_) 1 do not line up then they overlap substantially and we obtain 

d > I on all three insubstantial overlaps. Absorb d = 0 over the spacers if 

necessary. Otherwise these two copies of Bk line up and the substantial Bn-1 

overlaps are shifts by bk and bk + 1 respectively, k < n - 1. A1)plying c) we obtain 

d > ¼ on these two substantial overlaps. The spacer "1" in B~ ) aligns with "0" 

in B 0). The substantial overlaps plus spacer indices amount to at least ~ of the 

total overlap length. Conclude, again, d > I" 
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CASE 4: j = b,,-1 or j = b,-1 + 1. One easily obtains d > ¼ as one of the B,,-1 

blocks lines up and the other is shifted by one. In both cases any spacer "1" is 

aligned with "0". 

2 CASE 5 : b , - 1  + 1 < j < b , - i  + ~b,,-l. Two of the (n - 1)-block overlaps are 

substantial yielding d > ~ there. Again choose k smallest so the first Bk in B (a) n- - I  

covers the r~(3) /r~0) overlap. If this Bk block does not align with the last Bk 

block in BO_)I then the overlap is substantial (for k) and we obtain d > I One 7" 
absorbs d = 0 over the single spacer with the three overlap intervals if necessary. 

Otherwise these Bk blocks line up and the two (n - 1)-block shifts are bk + 1 and 

b~ respectively. The spacer "1" aligns with "1", nevertheless we calculate, using 
o(2) /B O) overlap c) from the hypothesis, with l the length of the ~ , - 1 /  ,,-1 

d >  ¼(2/+3)  > ¼(2/+3)  
- 2 l + 2 + b k  - 2 l + 2 +  ½l 

since l > 2bk. The latter is clearly > ~. 

2 CASE 6: bn-i -I- ~bn-i _< j < 2b,~_~. Tile ~,,~(3)-1//R(1)~,,-I overlap is substantial 
1 yielding d > 1 there. If both remaining two overlaps yield d > ~ one may absorb 

d = 0 over the spacer. Otherwise, if one insubstantial overlap yields d < ~, the 

other yields d > ½ being a shift by one index (apply b)). Counting disagreements 

we get at least ½l (l the length of the longer overlap) over the 21 indices plus the 

spacer. One therefore gets d > ¼ there, and hence d > ~ over the whole n-block 

overlap. 

CASE 7: j = 2bn-l. Obtain d > ½ easily. 

This finishes the proof of a) for B = B, .  If d(B, SJB) < ~ then either j = 0 or 

j _> 2b,-1 + 1. The first value is handled by case I and for the second value, note 

the overlap is entirely contained in the "-',,-1 t~(a) 1~,-1/R(1) overlap and the induction 

hypothesis applies directly, b) has been shown. To obtain c) observe that if 

k = n - 1 this was handled by Case 4. Otherwise the overlap consists of three 
1 (n - 1)-blocks shifted by bk (k < n - 1) yielding d > ~ ,  one aligned Bk block 

(d = 0) and one Bk block shifted against a Bk block by one unit. One of the 

spacer " l" ' s  aligns with "0". Evidently d > ¼. This verifies c) and completes the 

proof. II 
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Let x E Y C {0,1} z and let m, n E Z. We say that an n-block in x °° covers 

m if there exists no < n < m < m0 so that x~'0° B,,. It remains to lift the d X n  _ .~- 

separation of n-blocks to full names. 

LEMMA 4.5: The process (S, R) satisfies d > ~2" 

Proof." Let x # y E Y be fixed. We may as well assume x0 # y0 for we can 

always shift the picture: If I ,  is a sequence of intervals of integers starting at 

zero so lim,,--.oolI,] = +co and 

lim,sup d[ S"° zll .  

then 

limsup d[zll" 

Sn°y[I. ] > 

,Y]In] > g- 

Obtain, for all sufficiently large n, time-zero n-blocks B,(x )  mid B , (y )  covering 

x0 and y0 respectively. Evidently these n-blocks do not line up. 

Case 1. There are co-many n so that B, (x )  and B,,(y) are shifted by one 

index with respect to each other. Enumerate such n by {nk}k°°__ 1. By dropping 

to a further subsequence we obtain intervals of integers 

.r~ = [~,,~, fl,,~] n z 

satisfying either 

(i) for all k, I,,g C Z + U {0) and forms the indices of overlap between 

O) B(3) fy~ Bn,k_l(x ) and , , , -1,  , 

(ii) for all k, I,,~ C Z -  O {0} a~d forms the indices of the B (~) tx~ and 
- -  n ~ - - l k  ! 

B~l~_ l ( y ) overlap. 

In both cases [I,,~[ = bn~-i --, +co. Also in both cases 

max{]n] [n E I,~} _< b,, h - 1 =- 3b,,~-1. 

In the first instance set Nk = fl,,~ and observe d(xlv~ o ,t,o" N~ j > . ~ . ½ = ~  1 ~. I n t h e  

second instance, set Nk = a,~ obtaining 

1 1 1 

from Lemma 4.4 b). 
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Case ~. For all sufficiently large n, Bn(x) and B,(y) appear shifted by more 

than one index relative to each other. Let B+(z) and B+(y) be the first n-blocks 

appearing to the right of the previously defined B,,(x) and B,,(y). Evidently 

B + (z) and B + (y) do not line up. We define intervals of indices I,, = In,,, fin] (7 Z + 

as follows: If B+(x) and B+(y) overlap substantially then/ , ,  is defined by this 

overlap. If not, then I,, is defined by the overlap of either B,(z) and B+(y) or 

of B+(x) and B,,(y), one of which must be a substantial n-block overlap. We 

thereby obtain intervals I,, satisfying 

(i) I .  c_ z+. 
(ii) For each n , / ~  is the set of indices of a substantial n-block overlap. 

(iii) II-I > !b and max{k E I,,} < 2bn. 3 rt 

Setting N ,  = fin conclude Nn -* oo and 

1 1 1 
> = 

where we have used Lemma 4.3 to obtain d > { on the interval I , .  | 

Remark 4.5: 

(i) The d > 5 property for Chac6n's Automorphism has not been observed 

before in the literature. 

(ii) It is well known (and easy to prove, see [C1]) that S is weak-mixing but 

not mixing. The same will be true for T, the product of S and a Bernoulli 

shift. 

The interval map g constructed in Section 3 will have Lebesgue measure as its 

unique (abs. cont.) invariant measure, with respect to which g is weak-mixing 

but not mixing, since the latter property lifts to natural extensions. 

5 

In this section we discuss our final example in which S is a mixing rank 1 auto- 

morphism. Ornstein [Or] was the first to show that such transformations exist 

using a "random spacer" construction. With some effort, using the ideas of King 

and Weiss [Ki We], one may modify the Ornstein construction obtaining a mixing 

rank 1 with d > ¼. It turns out, however, that one need not to be so industrious. 
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THEOREM 5.1: Let S be a rank  1 transformation which is mixing.  Then S 

satisfies d > 6. 

R e m a r k  5.2: (i) Having chosen S as above the results of Section 3 are invoked to 

produce an automorphism T (product of S and a Bernoulli shift) which is mixing 

but not a K-automorphism, possessing a non-trivial zero-entropy factor. It is in 

fact only the zero-entropy property of S we need - -  any mixing, zero-entropy 

automorphism with d > 6 would serve for S. 

(ii) The interval map y associated to T in Section 3 has Lebesgue measure as its 

unique (amongst those abs. cont. to Lebesgue measure) invariant measure, and 

is mixing but not exact (in the terminology of endomorphisms) since its natural 

extension is not a K-automorphism. 

In what follows S will be a rank 1 mixing automorphism viewed as a it-invariant 

shift on the space X of sequences of symbols from A with time-zero partition R. 

As discussed in Section 2 there is no loss of generality in assmning A = {0, 1}, 

and the rank 1 properties 2.3) through 2.6) there. 1 

Once again, we first obtain a lower bound on the d separation of shifted n- 

blocks. The central idea is contained in the following 

PROPOSITION 5.3: Let  ~o > 0 be fixed. Then there exist 0 < M < oo and 6 > 0 

so that for all large N ,  i f  ~ and fl are two substrings o f  an N-b lock  BN beginning 

at i and i + m respectively, wi th  m > M and Is[ = I f l l  - ~obN, then 

d( o,, fl ) > ,S. 

Proof: By contradiction. To be precise, assume we may find m~ e0 > 0 and a 

sequence of blocks BNh and substrings ak and flk of BNk satisfying: 

5.4) bN, = IBN, o 0 .  

5.5) I kl = = >_  obN . 

5.6) ak appears at ik E [O, bNk -- 1] while flk appears at ik + m~ with 
k---*oo rn/¢ ---4 +oo. 

We will show that these conditions contradict the mixing of S. 

Fix a positive integer n (to be specified later) and let C1 , . . . ,  Cp be a listing of 

the atoms of ,,-1 Vi=0 s - JR.  We identify, in the usual manner, atoms with strings 

(of zeros and ones) of length n, which we shall also denote by Cj. Choose an 

atom, say Cj(k), which appears in ak at least #(Cj(k))(Ik  - n) times. This is 
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n-1 possible since no string corresponding to a null set in Vi=o S - iR  can appear in 

ak. Fix x • X generic. We will estimate It(S-'nkCj(k) fl Cj(k)) from below by 

examining the frequency of appearance of this cylinder in the S - R  name of x over 

the interval of indices [0, N] f3 Z, more precisely by counting those appearances 

of Cj(k) which occur in ak, sitting at ik inside blocks BN, with Cj(k) also at 

i~ + m~, all in the name of x. Let K = K(N, x) be the number of full Nk blocks 

appearing in x N, obtaining: 

g {p(Cj(k))(Ik - n) - nd(oqc,/~k )/k } 
~(s-"'c~ck) n ci¢k)) > g - e, 

(5.8) ---- I't(CJ(k))(lk -- rt) -- n~klk [ K ~  N-'-'~ --el 

>_ {#(C,(,)) [--'~Nk ] l ' - - n  n$'Ik} [ 1 - t ' ( B ~ N ' ) - ¢ 2 ] - e l ' b N .  

where el and e2 allow for exchange of the measure of a cylinder set with its fre- 

quency of appearance in x N and may be arranged arbitrarily small for sufficiently 

large N. 

Since there are only finitely many values possible for the integer j(k),  without 

loss of generality we may assume (having dropped to a subsequence of the Nk) 

that all k, j (k)  = jo • {1,2,... ,p}. For fixed n, for all large enough k we have: 

(5 .9)  Ik - n e0 
bNk > 2- by 5.5) 

n$~lk 
< e4 by  5.7)  ( 5 . 1 o )  bN, - 

( 5 . 1 1 )  [1 - , ( B ~ , , )  - ,~]  >_ 1 - es .  

Conclude, for fixed n, for all large enough k, from (5.8) - (5.11) 

G0 ¢0 ,(s-m'c~o n C . o )  > [ -{-J.(Cjo) - . . ] ( ~  - .5) - . .  > -5-#(C~o) 

for judiciously chosen parameters el, e2,.. . ,  ¢5. Since mk ~ ¢x) and S is mixing 

we see from the above inequality that, necessarily, #(Cjo ) >_ ~.  But, n was 

arbitrary and 
n--1 / 

M .  = m a x  if(C)l c e V S-'R 
i=O 
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satisfies limn--.ooM. = 0 in order for (S, p) to be non-atomic. Hence the contra- 

diction, l 

It remains to handle substrings a and ~ shifted by fewer than M indices. In the 

following, we refer to two copies of BN, one above the other with the lower copy 

shifted j indices to the right and we use d(BN, SiBN) to denote the d distance 

measured over the overlap of these two strings. 

PROPOSITION 5.12: Let M and eo > 0 be fixed. Then there is a ~o > 0 so that 

for all sufficiently large N,  i ra  and ~ are two substrings of BN with [a[ = [fl[ _> 

eo[BN[ and a appears at io in B~ while fl appears at io + j ,  1 < j <_ M, ~hen 

d(~, 8) > ~o. 

Proof." An n-block begins with a single symbol "1" followed by a string of "0"'s 

of length n, so it is immediate that for fixed n > M 

~,, = inf d(B,,, SJB,,) > O. 
l<j<_M 

Fix No > M large enough so that for all N > No at most 1A6e0 of the indices 

in an N-block are not covered by No blocks inside BN. We may also assume 

M < ~bNo. Now select N >> No (we will specify this more precisely later) and 

let ~ be a fixed substring of BN, [~[ > eobN, and let a be the substring below 

in SiBN. Since g > No there are at most l i f t [  = ~[a[  spacers between 

No blocks in either a or ~ (or both). The remaining indices correspond to No 

block overlaps. Since there are at most [[fl[/bN0 + 2] No blocks in BN meeting 

~, the number of indices covered by ~ arising from the overlap of the leftmost 

part of an No block in j3 and the rightmost part of an No block in a does not 

exceed j[[~l/bNo + 1] < ~[fl[ + M. The remaining indices correspond to No 

block overlaps from shifts by j .  Finally, removing the two endmost No block 

overlaps which may be partial, accounting for at most 2bNo indices we obtain 

Now, if N is sufficiently large, since [~l > eobNo, this quantity will exceed ~No/2 

which we take for ~0. | 

We combine the two previous results as 
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PROPOSITION 5.13: Let eo > 0 be fixed. Then there exists a 6o > 0 m2d No < oo 

so that ff  N > No and a and 13 are two substrings of BN appearing at io and 

io + j respectively with j > 1 and lal = I~l > e01BNh then 

d(a, Z) > 60. 

Finally, we lift this d separation property of n-blocks to full names. The issues 

are essentially as in Example 4.2) - -  a modification of the argument there gives 

PROPOSITION 5.14: S satisfies d > 60/20. (60 from Proposition 5.13.) 

Proof." Again, as in Lemma 4.5, fix x # V E A z where we may assume without 

loss of generality that x0 # y0. Obtain 6o > 0 and No < co from Proposition 

5.13 using e0 = ~ .  Let us also assume that x mid y have been chosen fi'om the 

set of full measure given by property 2.5) and Lemma 2.7 with 50 = ~ so that, 

for all large enough N 

(5.15) x0 and y0 are inside N-blocks BN(x) and BN(y) respectively (the time- 

zero N-blocks). 

(5.16) The length of the string of spacer symbols in x~oo (resp. Y~oo) imme- 

diately to the right of BN(X) (resp. BN(y)) does not exceed ~[BNI. 

CASE I: For infinitely many N, BN(X) and BN(y) are shifted relative to each 

other by j indices with  IBNI < j <  IBNI. 
For such N, let B+(x)  (resp. B+(y))  denote the first N-block to the right of 

BN(X) (resp. BN(y)). Evidently B+(x) and B+(y) do not line up and overlap 

by more than ~]BNI units. By Proposition 5.13), the d distance measured on 

this overlap is at least 60 and it appears within an interval of 21BN I indices from 

the origin so the d distance measured over the interval from the origin to the 

rightmost index of the overlap interval is at least ~ti0. 

CASE II: For infinitely many N the shift between BN(X) and BN(y) is at least 

I~[BN[. Then we can replace either BN(X) with B+(x) or BN(y) with B+(y) to 

obtain an interval in Z + over which 3 > 60. Complete the argument as in Case 

I. 

Otherwise, we have 
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CASE III: For all large N,  BN(Z) and BN(y)  overlap by at least ~ I B N I  and 

hence, for infinitely many N an interval of at least ~IBN] in the time-zero N- 

block overlap lies in Z + U {0} (or Z -  U {0}) and we may apply Proposition 5.13 

directly obtaining again, d >/~0 over these intervals. 

In all cases we find either 

o r  

l imsupd(x~,y~) > 1 6 o  
n 

limsupti(x°.,y°,,) > 1 6  o 
n 

and the result has been shown. | 
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